GAM RUN 16-026 MAG VERSION 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7

Ian C. Jones, Ph.D., P.G. Texas Water Development Board Groundwater Division Groundwater Availability Modeling Department (512) 463-6641 September 21, 2018

This page is intentionally left blank.

GAM RUN 16-026 MAG VERSION 2: MODELED AVAILABLE GROUNDWATER FOR THE AQUIFERS IN GROUNDWATER MANAGEMENT AREA 7

Ian C. Jones, Ph.D., P.G. Texas Water Development Board Groundwater Division Groundwater Availability Modeling Department (512) 463-6641 September 21, 2018

EXECUTIVE SUMMARY:

We have prepared estimates of the modeled available groundwater for the relevant aquifers of Groundwater Management Area 7—the Capitan Reef Complex, Dockum, Edwards-Trinity (Plateau), Ellenburger-San Saba, Hickory, Ogallala, Pecos Valley, Rustler, and Trinity aquifers. The estimates are based on the desired future conditions for these aquifers adopted by the groundwater conservation districts in Groundwater Management Area 7 on September 22, 2016 and March 22, 2018. The explanatory reports and other materials submitted to the Texas Water Development Board (TWDB) were determined to be administratively complete on June 22, 2018.

The original version of GAM Run 16-026 MAG inadvertently included modeled available groundwater estimates for areas declared not relevant by the groundwater management area and areas that had no desired future conditions for the Edwards-Trinity (Plateau), Pecos Valley, and Trinity aquifers. GAM Run 16-026 MAG Version 2 (this report) contains updates to reported total modeled available groundwater estimates and to Tables 5 and 6 that reflect only relevant portions of the Edwards-Trinity (Plateau), Pecos Valley, and Trinity aquifers.

The modeled available groundwater values are summarized by decade for the groundwater conservation districts (Tables 1, 3, 5, 7, 9, 11, 13) and for use in the regional water planning process (Tables 2, 4, 6, 8, 10, 12, 14). The modeled available groundwater estimates are 26,164 acre-feet per year in the Capitan Reef Complex Aquifer; 2,324 acre-feet per year in the Dockum Aquifer; 474,464 acre-feet per year in the undifferentiated Edwards-Trinity (Plateau), Pecos Valley, and Trinity aquifers; 22,616 acre-feet per year in the Ellenburger-San Saba Aquifer; 49,936 acre-feet per year in the Hickory Aquifer; 6,570 to 8,019 acre-feet per year in the Ogallala Aquifer; and 7,040 acre-feet per year in the Rustler Aquifer. The modeled available groundwater estimates were extracted from results of model runs using

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 4 of 50

the groundwater availability models for the Capitan Reef Complex Aquifer (Jones, 2016); the High Plains Aquifer System (Deeds and Jigmond, 2015); the minor aquifers of the Llano Uplift Area (Shi and others, 2016), and the Rustler Aquifer (Ewing and others, 2012). In addition, the alternative 1-layer model for the Edwards-Trinity (Plateau), Pecos Valley, and Trinity aquifers (Hutchison and others, 2011) was used for the Edwards-Trinity (Plateau), Pecos Valley, and Trinity aquifers, except for Kinney and Val Verde counties. In these two counties, the alternative Kinney County model (Hutchison and others, 2011) and the model associated with a hydrogeological study for Val Verde County and the City of Del Rio (EcoKai Environmental, Inc. and Hutchison, 2014), respectively, were used to estimate modeled available groundwater. The Val Verde County/Del Rio model covers Val Verde County. This model was used to simulate multiple pumping scenarios indicating the effects of a proposed wellfield. The model indicated the effects of varied pumping rates and wellfield locations. These model runs were used by Groundwater Management Area 7 as the basis for the desired future conditions for Val Verde County.

REQUESTOR:

Mr. Joel Pigg, chair of Groundwater Management Area 7 districts.

DESCRIPTION OF REQUEST:

In letters dated November 22, 2016 and March 26, 2018, Dr. William Hutchison on behalf of Groundwater Management Area 7 provided the TWDB with the desired future conditions for the Capitan, Dockum, Edwards-Trinity (Plateau), Ellenburger-San Saba, Hickory, Ogallala, Pecos Valley, Rustler, and Trinity aquifers in Groundwater Management Area 7. Groundwater Management Area 7 provided additional clarifications through emails to the TWDB on March 23, 2018 and June 12, 2018 for the use of model extents (Dockum, Ellenburger-San Saba, Hickory, Ogallala, Rustler aquifers), the use of aquifer extents (Capitan Reef Complex, Edwards-Trinity [Plateau], Pecos Valley, and Trinity aquifers), and desired future conditions for the Edwards-Trinity (Plateau) Aquifer of Kinney and Val Verde counties.

The final adopted desired future conditions as stated in signed resolutions for the aquifers in Groundwater Management Area 7 are reproduced below:

Capitan Reef [Complex] Aquifer

Total net drawdown of the Capitan Reef [Complex] Aquifer not to exceed 56 feet in Pecos County (Middle Pecos [Groundwater Conservation District]) in 2070 as compared with 2006 aquifer levels (Reference: Scenario 4, GMA 7 Technical Memorandum 15-06, 4-8-2015).

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 5 of 50

Dockum Aquifer

Total net drawdown of the Dockum Aquifer not to exceed 14 feet in Reagan County (Santa Rita [Groundwater Conservation District]) in 2070, as compared with 2012 aquifer levels.

Total net drawdown of the Dockum Aquifer not to exceed 52 feet in Pecos County (Middle Pecos [Groundwater Conservation District]) in 2070, as compared with 2012 aquifer levels.

Edwards-Trinity (Plateau), Pecos Valley, and Trinity aquifers

Average drawdown for [the Edwards-Trinity (Plateau), Pecos Valley, and Trinity aquifers] in the following [Groundwater Management Area] 7 counties not to exceed drawdowns from 2010 to 2070 [...].

County	[] Average Drawdowns from 2010 to 2070 [feet]
Coke	0
Crockett	10
Ector	4
Edwards	2
Gillespie	5
Glasscock	42
Irion	10
Kimble	1
Menard	1
Midland	12
Pecos	14
Reagan	42
Real	4
Schleicher	8
Sterling	7
Sutton	6

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 6 of 50

Taylor	0	
Terrell	2	
Upton	20	
Uvalde	2	

Total net drawdown [of the Edwards-Trinity (Plateau), Pecos Valley, and Trinity aquifers] in Kinney County in 2070, as compared with 2010 aquifer levels, shall be consistent with maintenance of an annual average flow of 23.9 [cubic feet per second] and an annual median flow of 23.9 [cubic feet per second] at Las Moras Springs [...].

Total net drawdown [of the Edwards-Trinity (Plateau), Pecos Valley, and Trinity aquifers] in Val Verde County in 2070, as compared with 2010 aquifer levels, shall be consistent with maintenance of an average annual flow of 73-75 [million gallons per day] at San Felipe Springs.

Minor Aquifers of the Llano Uplift Area

Total net drawdowns of [Ellenburger-San Saba Aquifer] levels in 2070, as compared with 2010 aquifer levels, shall not exceed the number of feet set forth below, respectively, for the following counties and districts:

County	[Groundwater Conservation District]	Drawdown in 2070 (feet)
Gillespie	Hill Country [Underground Water Conservation District]	8
Mason	Hickory [Underground Water Conservation District] no. 1	14
McCulloch	Hickory [Underground Water Conservation District] no. 1	29
Menard	Menard County [Underground Water District] and Hickory [Underground Water Conservation District] no. 1	46
Kimble	Kimble County [Groundwater Conservation District] and Hickory	18

GAM Run 16-026 MAG Version 2:

Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 7 of 50

	[Underground Water Conservation District] no. 1	
San Saba	Hickory [Underground Water Conservation District] no. 1	5

Total net drawdown of [Hickory Aquifer] levels in 2070, as compared with 2010 aquifer levels, shall not exceed the number of feet set forth below, respectively, for the following counties and districts:

County	[Groundwater Conservation District]	Drawdown in 2070 (feet)
Concho	Hickory [Underground Water Conservation District No. 1]	53
Gillespie	Hill Country UWCD	9
Mason	Hickory [Underground Water Conservation District No. 1]	17
McCulloch	Hickory [Underground Water Conservation District No. 1]	29
Menard	Menard UWD and Hickory [Underground Water Conservation District No. 1]	46
Kimble	Kimble County [Groundwater Conservation District] and Hickory [Underground Water Conservation District No. 1]	18
San Saba	Hickory [Underground Water Conservation District No. 1]	6

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 8 of 50

Ogallala Aquifer

Total net [drawdown] of the Ogallala Aquifer in Glasscock County (Glasscock [Groundwater Conservation District]) in 2070, as compared with 2012 aquifer levels, not to exceed 6 feet [...].

Rustler Aquifer

Total net drawdown of the Rustler Aquifer in Pecos County (Middle Pecos GCD) in 2070 not to exceed 94 feet as compared with 2009 aquifer levels.

Additionally, districts in Groundwater Management Area 7 voted to declare that the following aquifers or parts of aquifers are non-relevant for the purposes of joint planning:

- The Blaine, Igneous, Lipan, Marble Falls, and Seymour aquifers.
- The Edwards-Trinity (Plateau) Aquifer in Hickory Underground Water Conservation District No. 1, the Lipan-Kickapoo Water Conservation District, Lone Wolf Groundwater Conservation District, and Wes-Tex Groundwater Conservation District.
- The Ellenburger-San Saba Aquifer in Llano County.
- The Hickory Aquifer in Llano County.
- The Dockum Aquifer outside of Santa Rita Groundwater Conservation District and Middle Pecos Groundwater Conservation District.
- The Ogallala Aquifer outside of Glasscock County.

In response to a several requests for clarifications from the TWDB in 2017 and 2018, the Groundwater Management Area 7 Chair, Mr. Joel Pigg, and Groundwater Management Area 7 consultant, Dr. William R. Hutchison, indicated the following preferences for verifying the desired future condition of the aquifers and calculating modeled available groundwater volumes in Groundwater Management Area 7:

Capitan Reef Complex Aquifer

Calculate modeled available groundwater values based on the official aquifer boundaries.

Assume that modeled drawdown verifications within 1 foot achieve the desired future conditions.

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 9 of 50

Edwards-Trinity (Plateau), Pecos Valley, and Trinity aquifers

Calculate modeled available groundwater values based on the official aquifer boundaries.

Assume that modeled drawdown verifications within 1 foot achieve the desired future conditions.

Kinney County

Use the modeled available groundwater values and model assumptions from GAM Run 10-043 MAG Version 2 (Shi, 2012) to maintain annual average springflow of 23.9 cubic feet per second and a median flow of 24.4 cubic feet per second at Las Moras Springs from 2010 to 2060.

Val Verde County

There is no associated drawdown as a desired future condition. The desired future condition is based solely on simulated springflow conditions at San Felipe Spring of 73 to 75 million gallons per day. Pumping scenarios—50,000 acre-feet per year—in three well field locations, and monthly hydrologic conditions for the historic period 1969 to 2012 meet the desired future conditions set by Groundwater Management Area 7 (EcoKai and Hutchison, 2014; Hutchison 2018b).

Minor Aquifers of the Llano Uplift Area

Calculate modeled available groundwater values based on the spatial extent of the Ellenburger-San Saba and Hickory aquifers in the groundwater availability model for the aquifers of the Llano Uplift Area and use the same model assumptions used in Groundwater Management Area 7 Technical Memorandum 16-02 (Hutchison 2016g).

Drawdown calculations do not take into consideration the occurrence of dry cells where water levels are below the base of the aquifer.

Assume that modeled drawdown verifications within 1 foot achieve the desired future conditions.

Dockum Aquifer

Calculate modeled available groundwater values based on the spatial extent of the groundwater availability model for the Dockum Aquifer.

Modeled available groundwater analysis excludes pass-through cells.

Assume that modeled drawdown verifications within 1 foot achieve the desired future conditions.

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 10 of 50

Ogallala Aquifer

Calculate modeled available groundwater values based on the official aquifer boundary and use the same model assumptions used in Groundwater Management Area Technical Memorandum 16-01 (Hutchison, 2016f).

Modeled available groundwater analysis excludes pass-through cells.

Well pumpage decreases as the saturated thickness of the aquifer decreases below a 30-foot threshold.

Assume that modeled drawdown verifications within 1 foot achieve the desired future conditions.

Rustler Aquifer

Use 2008 as the baseline year and run the model from 2009 through 2070 (end of 2008/beginning of 2009 as initial conditions), as used in the submitted predictive model run.

Use 2008 recharge conditions throughout the predictive period.

Calculate modeled available groundwater values based on the spatial extent of the groundwater availability model for the Rustler Aquifer.

General-head boundary heads decline at a rate of 1.5 feet per year.

Use the same model assumptions used in Groundwater Management Area 7 Technical Memorandum 15-05 (Hutchison, 2016d).

Assume that modeled drawdown verifications within 1 foot achieve the desired future conditions.

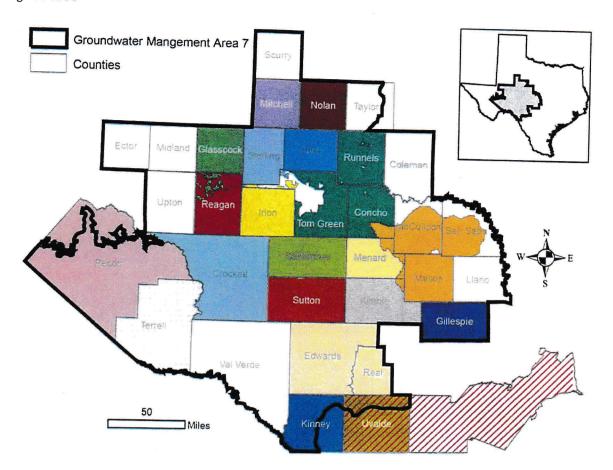
METHODS:

As defined in Chapter 36 of the Texas Water Code (TWC, 2011), "modeled available groundwater" is the estimated average amount of water that may be produced annually to achieve a desired future condition. Groundwater conservation districts are required to consider modeled available groundwater, along with several other factors, when issuing permits in order to manage groundwater production to achieve the desired future condition(s). The other factors districts must consider include annual precipitation and production patterns, the estimated amount of pumping exempt from permitting, existing permits, and a reasonable estimate of actual groundwater production under existing permits.

For relevant aquifers with desired future conditions based on water-level drawdown, water levels simulated at the end of the predictive simulations were compared to specified

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 11 of 50

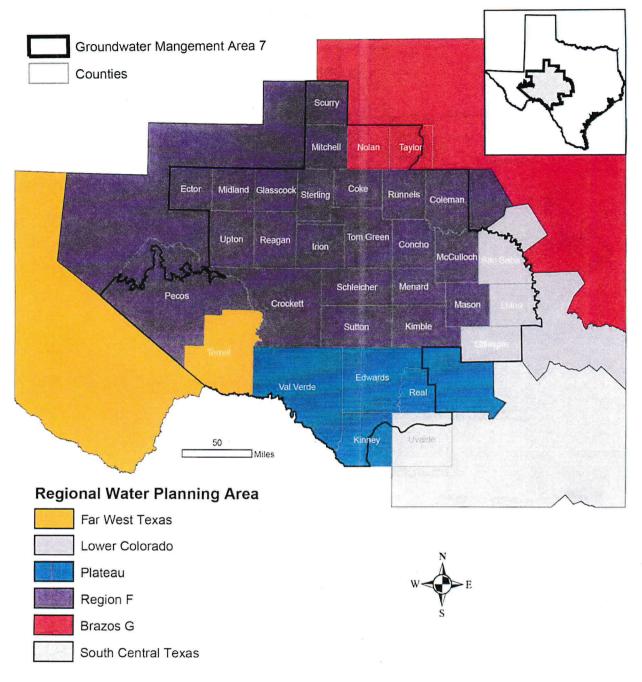
baseline water levels. In the case of the High Plains Aquifer System (Dockum and Ogallala aquifers) and the minor aquifers of the Llano Uplift area (Ellenburger-San Saba and Hickory aquifers), baseline water levels represent water levels at the end of the calibrated transient model are the initial water level conditions in the predictive simulation—water levels at the end of the preceding year. In the case of the Capitan Reef Complex, Edwards-Trinity (Plateau), Pecos Valley, and Trinity, and Rustler aquifers, the baseline water levels may occur in a specified year, early in the predictive simulation. These baseline years are 2006 in the groundwater availability model for the Capitan Reef Complex Aquifer, 2010 in the alternative model for the Edwards-Trinity (Plateau), Pecos Valley, and Trinity aquifers, 2012 in the groundwater availability model for the High Plains Aquifer System, 2010 in the groundwater availability model for the minor aquifers of the Llano Uplift area, and 2009 in the groundwater availability model for the Rustler Aquifer. The predictive model runs used average pumping rates from the historical period for the respective model except in the aquifer or area of interest. In those areas, pumping rates are varied until they produce drawdowns consistent with the adopted desired future conditions. Pumping rates or modeled available groundwater are reported in 10-year intervals.


Water-level drawdown averages were calculated for the relevant portions of each aquifer. Drawdown for model cells that became dry during the simulation—when the water level dropped below the base of the cell—were excluded from the averaging. In Groundwater Management Area 7, dry cells only occur during the predictive period in the Ogallala Aquifer of Glasscock County. Consequently, estimates of modeled available groundwater decrease over time as continued simulated pumping predicts the development of increasing numbers of dry model cells in areas of the Ogallala Aquifer in Glasscock County. The calculated water-level drawdown averages were compared with the desired future conditions to verify that the pumping scenario achieved the desired future conditions.

In Kinney and Val Verde counties, the desired future conditions are based on discharge from selected springs. In these cases, spring discharge is estimated based on simulated average spring discharge over a historical period maintaining all historical hydrologic conditions—such as recharge and river stage—except pumping. In other words, we assume that past average hydrologic conditions—the range of fluctuation—will continue in the future. In the cases of Kinney and Val Verde counties, simulated spring discharge is based on hydrologic variations that took place over the periods 1950 through 2005 and 1968 through 2013, respectively. The desired future condition for the Edwards-Trinity (Plateau) Aquifer in Kinney County is similar to the one adopted in 2010 and the associated modeled available groundwater is based on a specific model run—GAM Run 10-043 (Shi, 2012).

Modeled available groundwater values for the Ellenburger-San Saba and Hickory aquifers were determined by extracting pumping rates by decade from the model results using

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 12 of 50


ZONBUDUSG Version 1.01 (Panday and others, 2013). For the remaining relevant aquifers in Groundwater Management Area 7 modeled available groundwater values were determined by extracting pumping rates by decade from the model results using ZONEBUDGET Version 3.01 (Harbaugh, 2009). Decadal modeled available groundwater for the relevant aquifers are reported by groundwater conservation district and county (Figure 1; Tables 1, 3, 5, 7, 9, 11, 13), and by county, regional water planning area, and river basin (Figures 2 and 3; Tables 2, 4, 6, 8, 10, 12, 14). GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 13 of 50

Groundwater Conservation Districts

FIGURE 1. MAP SHOWING THE GROUNDWATER CONSERVATION DISTRICTS (GCD) IN GROUNDWATER MANAGEMENT AREA 7. NOTE: THE BOUNDARIES OF THE EDWARDS AQUIFER AUTHORITY OVERLAP WITH THE UVALDE COUNTY UNDERGROUND WATER CONSERVATION DISTRICT (UWCD). GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 14 of 50

MAP SHOWING REGIONAL WATER PLANNING AREAS IN GROUNDWATER MANAGEMENT AREA 7.

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 15 of 50

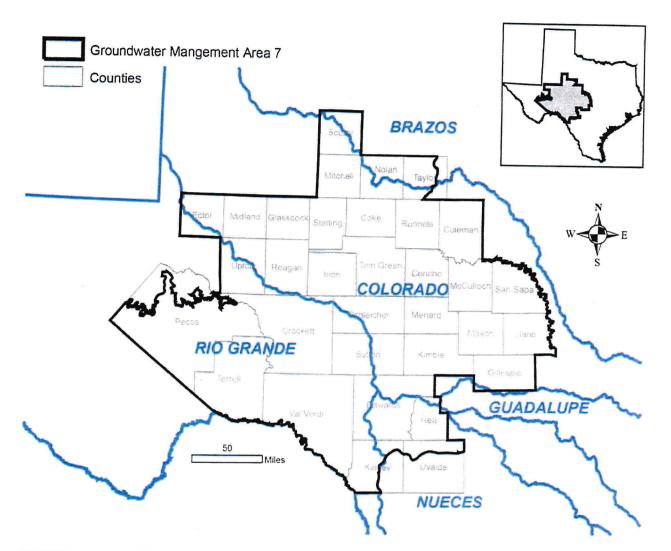


FIGURE 3. MAP SHOWING RIVER BASINS IN GROUNDWATER MANAGEMENT AREA 7. THESE INCLUDE PARTS OF THE BRAZOS, COLORADO, GUADALUPE, NUECES, AND RIO GRANDE RIVER BASINS.

1

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 16 of 50

PARAMETERS AND ASSUMPTIONS:

Capitan Reef Complex Aquifer

Version 1.01 of the groundwater availability model of the eastern arm of the Capitan Reef Complex Aquifer was used. See Jones (2016) for assumptions and limitations of the groundwater availability model. See Hutchison (2016h) for details on the assumptions used for predictive simulations.

The model has five layers: Layer 1, the Edwards-Trinity (Plateau) and Pecos Valley aquifers; Layer 2, the Dockum Aquifer and the Dewey Lake Formation; Layer 3, the Rustler Aquifer; Layer 4, a confining unit made up of the Salado and Castile formations, and the overlying portion of the Artesia Group; and Layer 5, the Capitan Reef Complex Aquifer, part of the Artesia Group, and the Delaware Mountain Group. Layers 1 through 4 are intended to act solely as boundary conditions facilitating groundwater inflow and outflow relative to the Capitan Reef Complex Aquifer (Layer 5).

The model was run with MODFLOW-2000 (Harbaugh and others, 2000).

The model was run for the interval 2006 through 2070 for a 64-year predictive simulation. Drawdowns were calculated by subtracting 2006 simulated water levels from 2070 simulated water levels, which were then averaged over the portion of the aquifer in Groundwater Management Area 7.

During predictive simulations, there were no cells where water levels were below the base elevation of the cell ("dry" cells). Therefore, all drawdowns were included in the averaging.

Drawdown averages and modeled available groundwater volumes are based on the official aquifer boundary within Groundwater Management Area 7.

Dockum and Ogallala Aquifers

Version 1.01 of the groundwater availability model for the High Plains Aquifer System by Deeds and Jigmond (2015) was used to construct the predictive model simulation for this analysis. See Hutchison (2016f) for details of the initial assumptions.

The model has four layers which represent the Ogallala and Pecos Valley Alluvium aquifers (Layer 1), the Edwards-Trinity (High Plains) and Edwards-Trinity (Plateau) aquifers (Layer 2), the Upper Dockum Aquifer (Layer 3), and the Lower Dockum Aquifer (Layer 4). Pass-through cells exist in layers 2 and 3 where the Dockum Aquifer was absent but provided pathway for flow between the Lower Dockum and the Ogallala or Edwards-Trinity (High Plains) aquifers vertically. These pass-through cells were excluded from the calculations of drawdowns and modeled available groundwater. GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 17 of 50

The model was run with MODFLOW-NWT (Niswonger and others, 2011). The model uses the Newton formulation and the upstream weighting package, which automatically reduces pumping as heads drop in a particular cell, as defined by the user. This feature may simulate the declining production of a well as saturated thickness decreases. Deeds and Jigmond (2015) modified the MODFLOW-NWT code to use a saturated thickness of 30 feet as the threshold—instead of percent of the saturated thickness—when pumping reductions occur during a simulation. It is important for groundwater management areas to monitor groundwater pumping and overall conditions of the aquifer. Because of the limitations of the groundwater model and the assumptions in this analysis, it is important that the groundwater conservation districts work with the TWDB to refine this analysis in the future given the reality of how the aquifer responds to the actual amount and location of pumping now and in the future. Historic precipitation patterns also need to be placed in context as future climatic conditions, such as dry and wet year precipitation patterns, may differ and affect groundwater flow conditions.

The model was run for the interval 2013 through 2070 for a 58-year predictive simulation. Drawdowns were calculated by subtracting 2012 simulated water levels from 2070 simulated water levels, which were then averaged over the portion of the aquifer in Groundwater Management Area 7.

During predictive simulations, there were no cells where water levels were below the base elevation of the cell ("dry" cells). Therefore, all drawdowns were included in the averaging. Modeled available groundwater analysis excludes pass-through cells.

Drawdown averages and modeled available groundwater volumes are based on the model boundaries within Groundwater Management Area 7 for the Dockum Aquifer and official aquifer boundaries for the Ogallala Aquifer.

Pecos Valley, Edwards-Trinity (Plateau) and Trinity Aquifers

The single-layer alternative groundwater flow model for the Edwards-Trinity (Plateau) and Pecos Valley aquifers used for this analysis. This model is an update to the previously developed groundwater availability model documented in Anaya and Jones (2009). See Hutchison and others (2011a) and Anaya and Jones (2009) for assumptions and limitations of the model. See Hutchison (2016e; 2018c) for details on the assumptions used for predictive simulations.

The groundwater model has one layer representing the Pecos Valley Aquifer and the Edwards-Trinity (Plateau) Aquifer. In the relatively narrow area where both aquifers are present, the model is a lumped representation of both aquifers.

The model was run with MODFLOW-2000 (Harbaugh and others, 2000).

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 18 of 50

The model was run for the interval 2006 through 2070 for a 65-year predictive simulation. Drawdowns were calculated by subtracting 2010 simulated water levels from 2070 simulated water levels, which were then averaged over the portion of the aquifer in Groundwater Management Area 7. Comparison of 2010 simulated and measured water levels indicate a root mean squared error of 84 feet or 3 percent of the range in water-level elevations.

Drawdowns for cells with water levels below the base elevation of the cell ("dry" cells) were included in the averaging.

Drawdown averages and modeled available groundwater volumes are based on the official aquifer boundaries within Groundwater Management Area 7.

Edwards-Trinity (Plateau) Aquifer of Kinney County

All parameters and assumptions for the Edwards-Trinity (Plateau) Aquifer of Kinney County in Groundwater Management Area 7 are described in GAM Run 10-043 MAG Version 2 (Shi, 2012). This report assumes a planning period from 2010 to 2070.

The Kinney County Groundwater Conservation District model developed by Hutchison and others (2011b) was used for this analysis. The model was calibrated to water level and spring flux collected from 1950 to 2005.

The model has four layers representing the following hydrogeologic units (from top to bottom): Carrizo-Wilcox Aquifer (layer 1), Upper Cretaceous Unit (layer 2), Edwards (Balcones Fault Zone) Aquifer/Edwards portion of the Edwards-Trinity (Plateau) Aquifer (layer 3), and Trinity portion of the Edwards-Trinity (Plateau) Aquifer (layer 4).

The model was run with MODFLOW-2000 (Harbaugh and others, 2000).

The model was run for the interval 2006 through 2070 for a 65-year predictive simulation. Drawdowns were calculated by subtracting 2010 simulated water levels from 2070 simulated water levels, which were then averaged over the portion of the aquifer in Groundwater Management Area 7.

Modeled available groundwater volumes are based on the official aquifer boundaries within Groundwater Management Area 7 in Kinney County.

Edwards-Trinity (Plateau) Aquifer of Val Verde County

The single-layer numerical groundwater flow model for the Edwards-Trinity (Plateau) Aquifer of Val Verde County was used for this analysis. This model is based on the previously developed alternative groundwater model of the Kinney County area documented in Hutchison and others (2011b). See EcoKai (2014) for assumptions and GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 19 of 50

limitations of the model. See Hutchison (2016e; 2018b) for details on the assumptions used for predictive simulations, including recharge and pumping assumptions.

The groundwater model has one layer representing the Edwards-Trinity (Plateau) Aquifer of Val Verde County.

The model was run with MODFLOW-2005 (Harbaugh, 2005).

The model was run for a 45-year predictive simulation representing hydrologic conditions of the interval 1968 through 2013. Simulated spring discharge from San Felipe Springs was then averaged over duration of the simulation. The resultant pumping rate that met the desired future conditions was applied to the predictive period—2010 through 2070—based on the assumption that average conditions over the predictive period are the same as those over the historic period represented by the model run.

Modeled available groundwater volumes are based on the official aquifer boundaries within Groundwater Management Area 7 in Val Verde County.

Rustler Aquifer

Version 1.01 of the groundwater availability model for the Rustler Aquifer by Ewing and others (2012) was used to construct the predictive model simulation for this analysis. See Hutchison (2016d) for details of the initial assumptions, including recharge conditions.

The model has two layers, the top one representing the Rustler Aquifer, and the other representing the Dewey Lake Formation and the Dockum Aquifer.

The model was run with MODFLOW-NWT (Niswonger and others, 2011).

The model was run for the interval 2009 through 2070 for a 61-year predictive simulation. Drawdowns were calculated by subtracting 2009 simulated water levels from 2070 simulated water levels, which were then averaged over the portion of the aquifer in Groundwater Management Area 7. During predictive simulations, there were no cells where water levels were below the base elevation of the cell ("dry" cells). Therefore, all drawdowns were included in the averaging.

Drawdown averages and modeled available groundwater volumes are based on the model boundaries within Groundwater Management Area 7.

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 20 of 50

Minor aquifers of the Llano Uplift Area

We used version 1.01 of the groundwater availability model for the minor aquifers in the Llano Uplift Area. See Shi and others (2016) for assumptions and limitations of the model. See Hutchison (2016g) for details of the initial assumptions.

The model contains eight layers: Trinity Aquifer, Edwards-Trinity (Plateau) Aquifer, and younger alluvium deposits (Layer 1), confining units (Layer 2), Marble Falls Aquifer and equivalent units (Layer 3), confining units (Layer 4), Ellenburger-San Saba Aquifer and equivalent units (Layer 5), confining units (Layer 6), Hickory Aquifer and equivalent units (Layer 7), and Precambrian units (Layer 8).

The model was run with MODFLOW-USG beta (development) version (Panday and others, 2013). Perennial rivers and reservoirs were simulated using the MODFLOW-USG river package. Springs were simulated using the MODFLOW-USG drain package.

Drawdown averages and modeled available groundwater volumes are based on the model boundaries within Groundwater Management Area 7.

The model was run for the interval 2011 through 2070 for a 60-year predictive simulation. Drawdowns were calculated by subtracting 2010 simulated water levels from 2070 simulated water levels, which were then averaged over the portion of the aquifer in Groundwater Management Area 7. During predictive simulations, there were no cells where water levels were below the base elevation of the cell ("dry" cells). Therefore, all drawdowns were included in the averaging.

RESULTS:

The modeled available groundwater estimates are 26,164 acre-feet per year in the Capitan Reef Complex Aquifer, 474,464 acre-feet per year in the undifferentiated Edwards-Trinity (Plateau), Pecos Valley, and Trinity aquifers, 22,616 acre-feet per year in the Ellenburger-San Saba Aquifer, 49,936 acre-feet per year in the Hickory Aquifer, 6,570 to 7,925 acre-feet per year in the Ogallala Aquifer, 2,324 acre-feet per year in the Dockum Aquifer, and 7,040 acre-feet per year in the Rustler Aquifer.

The modeled available groundwater for the respective aquifers has been summarized by aquifer, county, and groundwater conservation district (Tables 1, 3, 5, 7, 9, 11, and 13). The modeled available groundwater is also summarized by county, regional water planning area, river basin, and aquifer for use in the regional water planning process (Tables 2, 4, 6, 8, 10, 12, and 14). The modeled available groundwater for the Ogallala Aquifer that achieves the desired future conditions adopted by districts in Groundwater Management Area 7 decreases from 7,925 to 6,570 acre-feet per year between 2020 and 2070 (Tables 9 and 10). This decline is attributable to the occurrence of increasing numbers of cells where

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 21 of 50

water levels were below the base elevation of the cell ("dry" cells) in parts of Glasscock County. Please note that MODFLOW-NWT automatically reduces pumping as water levels decline. GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 22 of 50

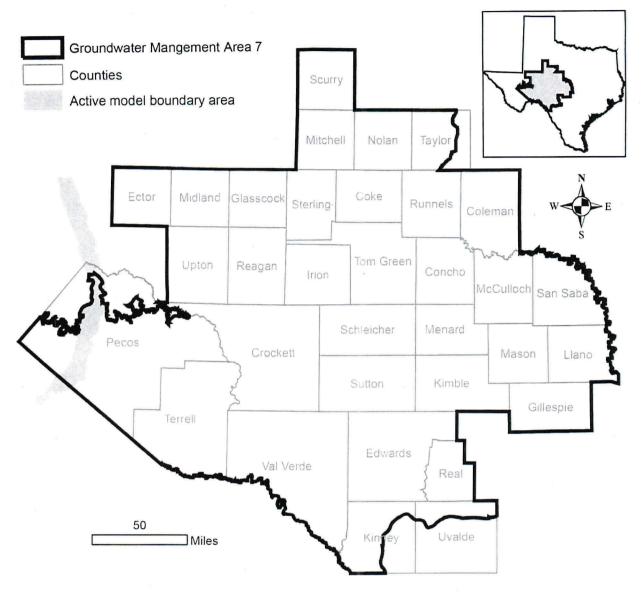


FIGURE 4. MAP SHOWING THE AREAS COVERED BY THE CAPITAN REEF COMPLEX AQUIFER IN THE GROUNDWATER AVAILABILITY MODEL FOR THE EASTERN ARM OF THE CAPITAN REEF COMPLEX AQUIFER IN GROUNDWATER MANAGEMENT AREA 7.

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 23 of 50

MODELED AVAILABLE GROUNDWATER FOR THE CAPITAN REEF COMPLEX AQUIFER IN GROUNDWATER MANAGEMENT AREA 7 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT AND COUNTY FOR EACH DECADE BETWEEN 2006 AND 2070. RESULTS ARE IN ACRE-FEET PER YEAR. GCD IS THE ABBREVIATION FOR GROUNDWATER CONSERVATION DISTRICT. TABLE 1.

District					Ye	rear (
nsunce	county	2006	2010	2020	2030	2040	2050	2060	2070
Middle Pecos GCD	Pecos	26,164	26,164	26,164	26,164	26,164	26,164	26,164	26,164
	Total	26,164	26,164	26,164	26,164	26,164	26,164	26,164	
GMA 7	re o presentario e a conserva e conserva e servaria de conserva de conserva de conserva de conserva de conserv	26,164	26,164	26,164	26,164	26,164	26,164	26,164	

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 24 of 50 MODELED AVAILABLE GROUNDWATER FOR THE CAPITAN REEF COMPLEX AQUIFER IN GROUNDWATER MANAGEMENT AREA 7 SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN FOR EACH DECADE BETWEEN 2020 AND 2070. RESULTS ARE IN ACRE-FEET PER YEAR. TABLE 2.

County	RWPA	River Basin			Year			
			2020	2030	2040	2050	2060	2070
Docco	L:	Rio Grande	26,164	26,164	26,164	26,164	26,164	26,164
recos	L	Total	26,164	26,164	26,164	26,164	26,164	26,164
GMA 7			26,164	26,164	26,164	26,164	26,164	26,164
		R						

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 25 of 50

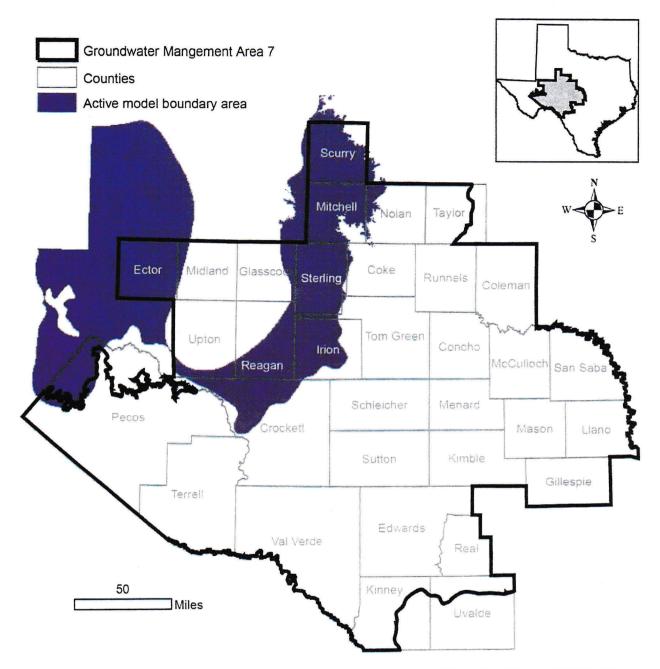


FIGURE 5. MAP SHOWING AREAS COVERED BY THE DOCKUM AQUIFER IN THE GROUNDWATER AVAILABILITY MODEL FOR THE HIGH PLAINS AQUIFER SYSTEM IN GROUNDWATER MANAGEMENT AREA 7.

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 26 of 50

MODELED AVAILABLE GROUNDWATER FOR THE DOCKUM AQUIFER IN GROUNDWATER MANAGEMENT AREA 7 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT AND COUNTY FOR EACH DECADE BETWEEN 2013 AND 2070. RESULTS ARE IN ACRE-FEET PER YEAR. GCD AND UWCD ARE THE ABBREVIATIONS FOR GROUNDWATER CONSERVATION DISTRICT AND UNDERGROUND WATER CONSERVATION DISTRICT, RESPECTIVELY. TABLE 3.

District					Year			
חזאחוכר	county	2013	2020	2030	2040	2050	2060	2070
Middle Peros GCD	Pecos	2,022	2,022	2,022	2,022	2,022	2,022	2,022
	Total	2,022	2,022	2,022	2,022	2,022	2,022	2,022
Santa Rita IIWCD	Reagan	302	302	302	302	302	302	302
	Total	302	302	302	302	302	302	302
GMA 7		2324	2,324	2,324	2,324	2,324	2,324	2,324

Reagan County that fall within Glasscock Groundwater Conservation District. The year 2013 is used because the 2012 Note: The modeled available groundwater for Santa Rita Underground Water Conservation District excludes parts of desired future condition baseline year for the Dockum Aquifer is an initial condition in the predictive model run. GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 27 of 50 MODELED AVAILABLE GROUNDWATER FOR THE DOCKUM AQUIFER IN GROUNDWATER MANAGEMENT AREA 7 SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN FOR EACH DECADE BETWEEN 2020 AND 2070. RESULTS ARE IN ACRE-FEET PER YEAR. TABLE 4.

	VUMU	Direct Deriv			Year			
county	KWFA	KUVET BASHI	2020	2030	2040	2050	2060	2070
Peros	<u>i</u> .	Rio Grande	2,022	2,022	2,022	2,022	2,022	2,022
		Total	2,022	2,022	2,022	2,022	2,022	2,022
		Colorado	302	302	302	302	302	302
Reagan	<u>ند</u>	Rio Grande	0	0	0	0	0	0
		Total	962	962	962	962	962	962
GMA 7			2,324	2,324	2,324	2,324	2,324	2,324

Note: The modeled available groundwater for Reagan County excludes parts of Reagan County that fall outside of Santa Rita Underground Water Conservation District. GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 28 of 50

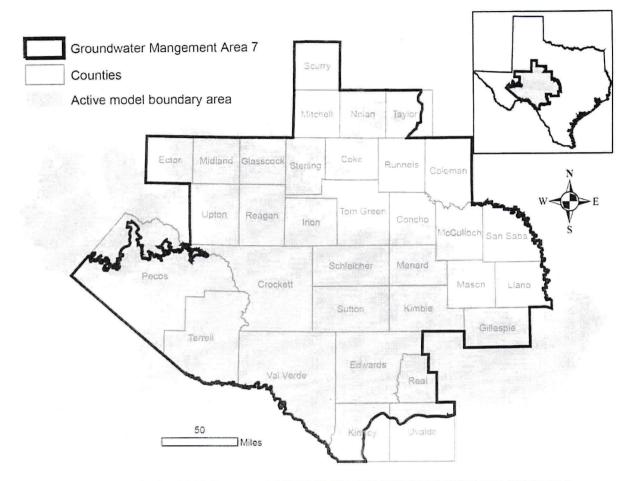


FIGURE 6. MAP SHOWING THE AREAS COVERED BY THE UNDIFFERENTIATED EDWARDS-TRINITY (PLATEAU), PECOS VALLEY, AND TRINITY AQUIFERS IN THE GROUNDWATER AVAILABILITY MODEL FOR THE EDWARDS-TRINITY (PLATEAU) AND PECOS VALLEY AQUIFERS IN GROUNDWATER MANAGEMENT AREA 7.

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 29 of 50

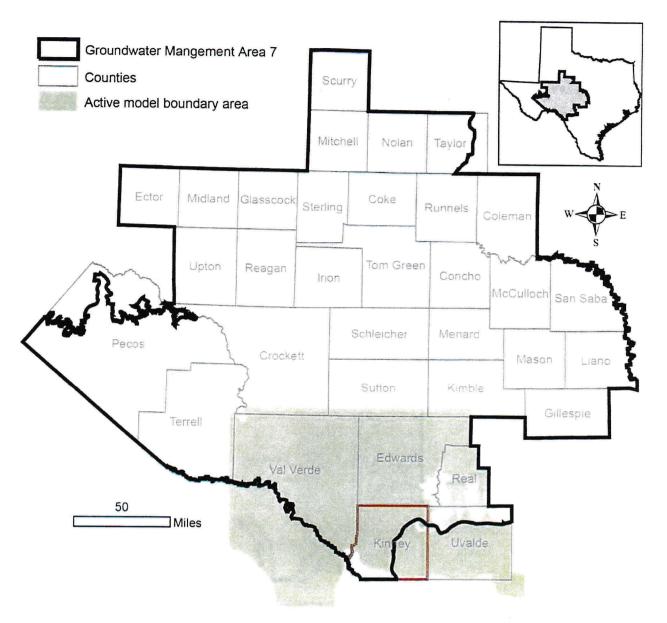


FIGURE 7. MAP SHOWING THE AREAS COVERED BY THE EDWARDS-TRINITY (PLATEAU) AQUIFER IN THE ALTERNATIVE MODEL FOR THE EDWARDS-TRINITY (PLATEAU) AQUIFER IN KINNEY COUNTY.

GAM Run 16-026 MAG Version 2:

Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 30 of 50

FIGURE 8. MAP SHOWING THE AREAS COVERED BY THE EDWARDS-TRINITY (PLATEAU) AQUIFER IN THE GROUNDWATER FLOW MODEL FOR THE EDWARDS-TRINITY (PLATEAU) AQUIFER IN VAL VERDE COUNTY.

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 31 of 50

TRINITY AQUIFERS IN GROUNDWATER MANAGEMENT AREA 7 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT ABBREVIATION FOR UNDERGROUND WATER CONSERVATION DISTRICT, WCD IS WATER CONSERVATION DISTRICT, UWD IS UNDERGROUND WATER DISTRICT, UWC IS UNDERGROUND WATER CONSERVATION, AND C AND R DISTRICT IS MODELED AVAILABLE GROUNDWATER FOR THE UNDIFFERENTIATED EDWARDS-TRINITY (PLATEAU), PECOS VALLEY, AND (GCD) AND COUNTY, FOR EACH DECADE BETWEEN 2006 AND 2070. RESULTS ARE IN ACRE-FEET PER YEAR. UWCD IS **CONSERVATION AND RECLAMATION DISTRICT.** TABLE 5.

Noteiat	Counter				Year	-		а "А 1944 — А
DISUTIC	county	2010	2020	2030	2040	2050	2060	2070
	Coke	266	266	266	266	266	266	266
LOKE COULLY UWCD	Total	266	266	266	266	266	266	266
	Crockett	4,675	4,675	4,675	4,675	4,675	4,675	4,675
רו סכאפון רטווווא מרח	Total	4,675	4,675	4,675	4,675	4,675	4,675	4,675
	Glasscock	65,186	65,186	65,186	65,186	65,186	65,186	65,186
Glasscock GCD	Reagan	40,835	40,835	40,835	40,835	40,835	40,835	40,835
	Total	106,021	106,021	106,021	106,021	106,021	106,021	106,021
	Gillespie	4,979	4,979	4,979	4,979	4,979	4,979	4,979
	Total	4,979	4,979	4,979	4,979	4,979	4,979	4,979
Inion County WCD*	Irion	3,289	3,289	3,289	3,289	3,289	3,289	3,289
	Total	3,289	3,289	3,289	3,289	3,289	3,289	3,289
	Kimble	1,282	1,282	1,282	1,282	1,282	1,282	1,282
	Total	1,282	1,282	1,282	1,282	1,282	1,282	1,282
	Kinney	70,341	70,341	70,341	70,341	70,341	70,341	70,341
	Total	70,341	70,341	70,341	70,341	70,341	70,341	70,341

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 32 of 50

TABLE 5. (CONTINUED).

District	Combre				Year		107	
זאווופות	county	2010	2020	2030	2040	2050	2060	2070
Menard County HWD	Menard	2,217	2,217	2,217	2,217	2,217	2,217	2,217
	Total	2,217	2,217	2,217	2,217	2,217	2,217	2,217
Middle Deros CCD	Pecos	117,309	117,309	117,309	117,309	117,309	117,309	117,309
	Total	117,309	117,309	117,309	117,309	117,309	117,309	117,309
Plateau IIMC and Sumily Dictrict	Schleicher	8,034	8,034	8,034	8,034	8,034	8,034	8,034
minera fidane nue avia mante	Total	8,034	8,034	8,034	8,034	8,034	8,034	8,034
	Edwards	5,676	5,676	5,676	5,676	5,676	5,676	5,676
Real-Edwards C and R District	Real	7,523	7,523	7,523	7,523	7,523	7,523	7,523
	Total	13,199	13,199	13,199	13,199	13,199	13,199	13,199
Santa Rita HWCD	Reagan	27,398	27,398	27,398	27,398	27,398	27,398	27,398
	Total	27,398	27,398	27,398	27,398	27,398	27,398	27,398
Storling County HWCD	Sterling	2,495	2,495	2,495	2,495	2,495	2,495	2,495
	Total	2,495	2,495	2,495	2,495	2,495	2,495	2,495
Sutton County HMCD	Sutton	6,400	6,400	6,400	6,400	6,400	6,400	6,400
	Total	6,400	6,400	6,400	6,400	6,400	6,400	6,400
Terrall County CCD	Terrell	1,420	1,420	1,420	1,420	1,420	1,420	1,420
	Total	1,420	1,420	1,420	1,420	1,420	1,420	1,420
Ilvalde County HWCD	Uvalde	1,993	1,993	1,993	1,993	1,993	1,993	1,993
	Total	1,993	1,993	1,993	1,993	1,993	1,993	1,993

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 33 of 50

TABLE 5. (CONTINUED).

	District					Year			
5	minera	county	2010	2020	2030	2040	2050	2060	2070
	No district		102,415	102,415	102,415	102,415	102,415	102,415	102,415
	GMA 7		474,464	474,464	474,464	474,464	474,464	474,464	474,464

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 34 of 50 MODELED AVAILABLE GROUNDWATER BY DECADE FOR THE UNDIFFERENTIATED EDWARDS-TRINITY (PLATEAU), PECOS VALLEY, AND TRINITY AQUIFERS IN GROUNDWATER MANAGEMENT AREA 7 SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN FOR EACH DECADE BETWEEN 2020 AND 2070. RESULTS ARE IN ACRE-FEET PER YEAR. TABLE 6.

		-			Year	u		
county	KWPA	kiver basın	2020	2030	2040	2050	2060	2070
	Ľ	Colorado	266	266	266	266	266	266
Loke	L	Total	266	266	266	266	266	667
		Colorado	20	20	20	20	20	20
Crockett	Ч	Rio Grande	5,427	5,427	5,427	5,427	5,427	5,427
	-	Total	5,447	5,447	5,447	5,447	5,447	5,447
15		Colorado	4,925	4,925	4,925	4,925	4,925	4,925
Ector	Ŀ	Rio Grande	617	617	617	617	617	617
		Total	5,542	5,542	5,542	5,542	5,542	5,542
		Colorado	2,305	2,305	2,305	2,305	2,305	2,305
	-	Nueces	1,631	1,631	1,631	1,631	1,631	1,631
Euwarus		Rio Grande	1,740	1,740	1,740	1,740	1,740	1,740
	-	Total	5,676	5,676	5,676	5,676	5,676	5,676
		Colorado	4,843	4,843	4,843	4,843	4,843	4,843
Gillespie	К	Guadalupe	136	136	136	136	136	136
		Total	4,979	4,979	4,979	4,979	4,979	4,979
Classical	Ľ	Colorado	65,186	65,186	65,186	65,186	65,186	65,186
UIASSCUCK	L.	Total	65,186	65,186	65,186	65,186	65,186	65,186

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 35 of 50

TABLE 6. (CONTINUED).

	A GUAD				Year	ar	A State of the second se	
county	KWFA	KIVET BASIN	2020	2030	2040	2050	2060	2070
Trion	5	Colorado	3,289	3,289	3,289	3,289	3,289	3,289
10111	5	Total	3,289	3,289	3,289	3,289	3,289	3,289
Vimbla*	Ľ	Colorado	1,282	1,282	1,282	1,282	1,282	1,282
MIIIDIC	-	Total	1,282	1,282	1,282	1,282	1,282	1,282
		Nueces	12	12	12	12	12	12
Kinney	-	Rio Grande	70,329	70,329	70,329	70,329	70,329	70,329
		Total	70,341	70,341	70,341	70,341	70,341	70,341
Manade	5	Colorado	2,217	2,217	2,217	2,217	2,217	2,217
Menaru	٤.	Total	2,217	2,217	2,217	2,217	2,217	2,217
International Internationa International International Int	Ľ	Colorado	23,233	23,233	23,233	23,233	23,233	23,233
MINIM	_ -	Total	23,233	23,233	23,233	23,233	23,233	23,233
Dococ	5	Rio Grande	117,309	117,309	117,309	117,309	117,309	117,309
enno 1	_	Total	117,309	117,309	117,309	117,309	117,309	117,309
		Colorado	68,205	68,205	68,205	68,205	68,205	68,205
Reagan	Ŀ	Rio Grande	28	28	28	28	28	28
		Total	68,233	68,233	68,233	68,233	68,233	68,233
		Colorado	277	277	277	277	277	277
lead	_	Guadalupe	3	3	3	3	3	3
IDAN	-	Nueces	7,243	7,243	7,243	7,243	7,243	7,243
		Total	7,523	7,523	7,523	7,523	7,523	7,523

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 36 of 50

TABLE 6. (CONTINUED).

County	Valvia	Dirror Docin			Ye	Year		
county	NWEA		2020	2030	2040	2050	2060	2070
		Colorado	6,403	6,403	6,403	6,403	6,403	6,403
Schleicher	Ľ.	Rio Grande	1,631	1,631	1,631	1,631	1,631	1,631
		Total	8,034	8,034	8,034	8,034	8,034	8,034
Starling	12	Colorado	2,495	2,495	2,495	2,495	2,495	2,495
300100		Total	2,495	2,495	2,495	2,495	2,495	2,495
		Colorado	388	388	388	388	388	388
Sutton	н	Rio Grande	6,022	6,022	6,022	6,022	6,022	6,022
		Total	6,410	6,410	6,410	6,410	6,410	6,410
		Brazos	331	331	331	331	331	331
Taylor	9	Colorado	158	158	158	158	158	158
		Total	489	489	489	489	489	489
Tarrall	11	Rio Grande	1,420	1,420	1,420	1,420	1,420	1,420
	۵ ۵	Total	1,420	1,420	1,420	1,420	1,420	1,420
		Colorado	21,243	21,243	21,243	21,243	21,243	21,243
Upton	í.	Rio Grande	1,126	1,126	1,126	1,126	1,126	1,126
		Total	22,369	22,369	22,369	22,369	22,369	22,369
Ilvalde	_	Nueces	1,993	1,993	1,993	1,993	1,993	1,993
2000	2	Total	1,993	1,993	1,993	1,993	1,993	1,993
Val Verde	_	Rio Grande	50,000	50,000	50,000	50,000	50,000	50,000
2002.0	_	Total	50,000	50,000	50,000	50,000	50,000	50,000
GMA 7			474,464	474,464	474,464	474.464	474.464	474.464

*The modeled available groundwater for Kimble and Menard counties excludes the parts of the counties that fall within Hickory Underground Water Conservation District No. 1.

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 37 of 50

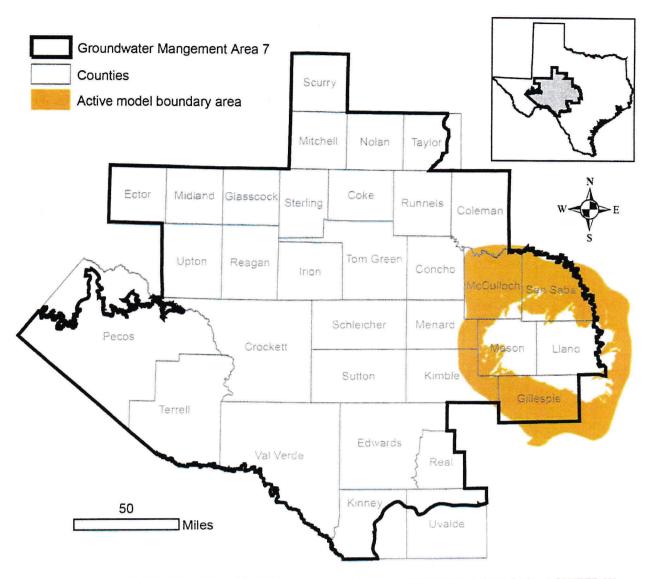


FIGURE 9. MAP SHOWING THE AREAS COVERED BY THE ELLENBURGER-SAN SABA AQUIFER IN THE GROUNDWATER AVAILABILITY MODEL FOR THE MINOR AQUIFERS OF THE LLANO UPLIFT AREA IN GROUNDWATER MANAGEMENT AREA 7.

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 38 of 50

MODELED AVAILABLE GROUNDWATER FOR THE ELLENBURGER-SAN SABA AQUIFER IN GROUNDWATER MANAGEMENT AREA 7 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTY FOR EACH DECADE BETWEEN 2011 AND 2070. RESULTS ARE IN ACRE-FEET PER YEAR. UWCD IS THE ABBREVIATION FOR UNDERGROUND WATER CONSERVATION DISTRICT AND UWD IS UNDERGROUND WATER DISTRICT. TABLE 7.

District					Year			
DISULICI	county	2011	2020	2030	2040	2050	2060	2070
	Kimble	344	344	344	344	344	344	344
	Mason	3,237	3,237	3,237	3,237	3,237	3,237	3,237
Hickory IJWCD No. 1	McCulloch	3,466	3,466	3,466	3,466	3,466	3,466	3,466
	Menard	282	282	282	282	282	282	282
	San Saba	5,559	5,559	5,559	5,559	5,559	5,559	5,559
	Total	12,887	12,887	12,887	12,887	12,887	12,887	12,887
Hill Country HWCD	Gillespie	6,294	6,294	6,294	6,294	6,294	6,294	6,294
an in finner in	Total	6,294	6,294	6,294	6,294	6,294	6,294	6,294
Kimhle County GCD	Kimble	178	178	178	178	178	178	178
	Total	178	178	178	178	178	178	178
Menard County HWD	Menard	27	27	27	27	27	27	27
	Total	27	27	27	27	27	27	27
	McCulloch	898	868	868	898	868	868	868
No District	San Saba	2,331	2,331	2,331	2,331	2,331	2,331	2,331
	Total	3,229	3,229	3,229	3,229	3,229	3,229	3,229
GMA 7		22,616	22,616	22,616	22,616	22,616	22,616	22,616

ZULU GESITEG IUTUTE CONDITION DASCHIPE YEAT IOF THE EHENDUTGET-SAN SADA AQUITET IS AN INITIAL en necause me condition in the predictive model run. GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 39 of 50

TABLE 8.

MODELED AVAILABLE GROUNDWATER FOR THE ELLENBURGER-SAN SABA AQUIFER IN GROUNDWATER MANAGEMENT AREA 7 SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN FOR EACH DECADE BETWEEN 2020 AND 2070. RESULTS ARE IN ACRE-FEET PER YEAR.

Country	VUND	River			Year	ar		
county	NWLA	Basin	2020	2030	2040	2050	2060	2070
		Colorado	6,294	6,294	6,294	6,294	6,294	6,294
Gillespie	K	Total	6,294	6,294	6,294	6,294	6,294	6,294
		Colorado	521	521	521	521	521	521
Kimble	F	Total	521	521	521	521	521	521
	10	Colorado	3,237	3,237	3,237	3,237	3,237	3,237
Mason	÷	Total	3,237	3,237	3,237	3,237	3,237	3,237
		Colorado	4,364	4,364	4,364	4,364	4,364	4,364
McCulloch	H	Total	4,364	4,364	4,364	4,364	4,364	4,364
		Colorado	309	309	309	309	309	309
Menard	Ŀ	Total	309	309	309	309	309	309
		Colorado	7,890	7,890	7,890	7,890	7,890	7,890
San Saba	K	Total	7,890	7,890	7,890	7,890	7,890	7,890
GMA 7			22,616	22,616	22,616	22,616	22,616	22.616

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 40 of 50

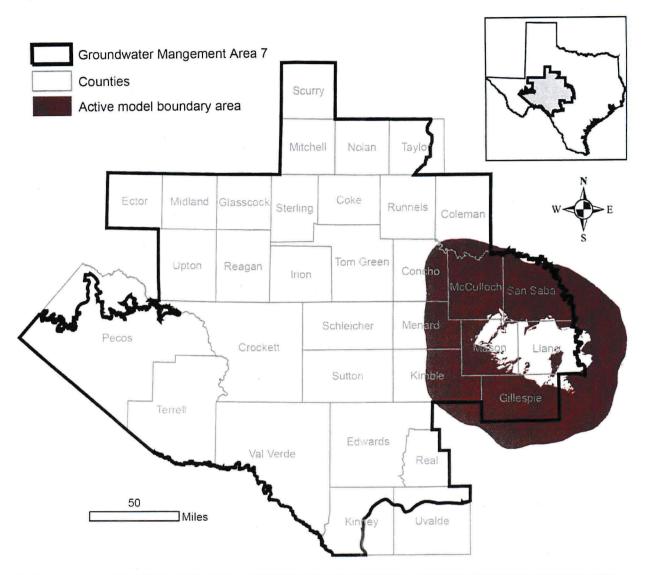


FIGURE 10. MAP SHOWING AREAS COVERED BY THE HICKORY AQUIFER IN THE GROUNDWATER AVAILABILITY MODEL FOR THE MINOR AQUIFERS OF THE LLANO UPLIFT AREA IN GROUNDWATER MANAGEMENT AREA 7.

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 41 of 50 MODELED AVAILABLE GROUNDWATER FOR THE HICKORY AQUIFER IN GROUNDWATER MANAGEMENT AREA 7 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTY FOR EACH DECADE BETWEEN 2011 AND 2070. RESULTS ARE IN ACRE-FEET PER YEAR. UWCD IS THE ABBREVIATION FOR UNDERGROUND WATER CONSERVATION DISTRICT AND UWD IS UNDERGROUND WATER DISTRICT. TABLE 9.

					Year			
DISTRICT	county	2011	2020	2030	2040	2050	2060	2070
	Concho	13	13	13	13	13	13	13
	Kimble	42	42	42	42	42	42	42
	Mason	13,212	13,212	13,212	13,212	13,212	13,212	13,212
Hickory UWCD No. 1	McCulloch	21,950	21,950	21,950	21,950	21,950	21,950	21,950
	Menard	2,600	2,600	2,600	2,600	2,600	2,600	2,600
	San Saba	7,027	7,027	7,027	7,027	7,027	7,027	7,027
	Total	44,843	44,843	44,843	44,843	44,843	44,843	44,843
	Gillespie	1,751	1,751	1,751	1,751	1,751	1,751	1,751
	Total	1,751	1,751	1,751	1,751	1,751	1,751	1,751
Vimble Country of D	Kimble	123	123	123	123	123	123	123
	Total	123	123	123	123	123	123	123
I inon Vichango MCD	Concho	13	13	13	13	13	13	13
	Total	13	13	13	13	13	13	13
Monard County []WD	Menard	126	126	126	126	126	126	126
MELIAI A COULIES OWD	Total	126	126	126	126	126	126	126
	McCulloch	2,427	2,427	2,427	2,427	2,427	2,427	2,427
No District	San Saba	652	652	652	652	652	652	652
	Total	3,080	3,080	3,080	3,080	3,080	3,080	3,080
GMA 7		49,936	49,936	49,936	49,936	49,936	49,936	49,936
Note: The year 2011 is used because	sed because the 2010 desired future condition baseline year for the Hickory Aquifer is an initial condition in the	ed future cond	ition baseline	year for the	Hickory Aqu	ifer is an init	ial condition	in the

predictive model run.

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 42 of 50

TABLE 10. N

MODELED AVAILABLE GROUNDWATER FOR THE HICKORY AQUIFER IN GROUNDWATER MANAGEMENT AREA 7 SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN FOR EACH DECADE BETWEEN 2020 AND 2070. RESULTS ARE IN ACRE-FEET PER YEAR.

County	VANDA	River			Year	ar		
country	NWLA	Basin	2020	2030	2040	2050	2060	2070
Concho	<u>[7</u>	Colorado	27	27	27	27	27	27
		Total	27	27	27	27	27	27
Gillesnie	К	Colorado	1,751	1,751	1,751	1,751	1,751	1,751
		Total	1,751	1,751	1,751	1,751	1,751	1,751
Kimble	ĹŦ	Colorado	165	165	165	165	165	165
		Total	165	165	165	165	165	165
Mason	(<u>r</u>	Colorado	13,212	13,212	13,212	13,212	13,212	13,212
		Total	13,212	13,212	13,212	13,212	13,212	13,212
McCulloch	[1.	Colorado	24,377	24,377	24,377	24,377	24,377	24,377
	•	Total	24,377	24,377	24,377	24,377	24,377	24,377
Menard	[1.	Colorado	2,725	2,725	2,725	2,725	2,725	2,725
		Total	2,725	2,725	2,725	2,725	2,725	2,725
San Saba	К	Colorado	7,680	7,680	7,680	7,680	7,680	7,680
		Total	7,680	7,680	7,680	7,680	7,680	7,680
GMA 7			49,936	49,936	49,936	49,936	49,936	49,936

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 43 of 50

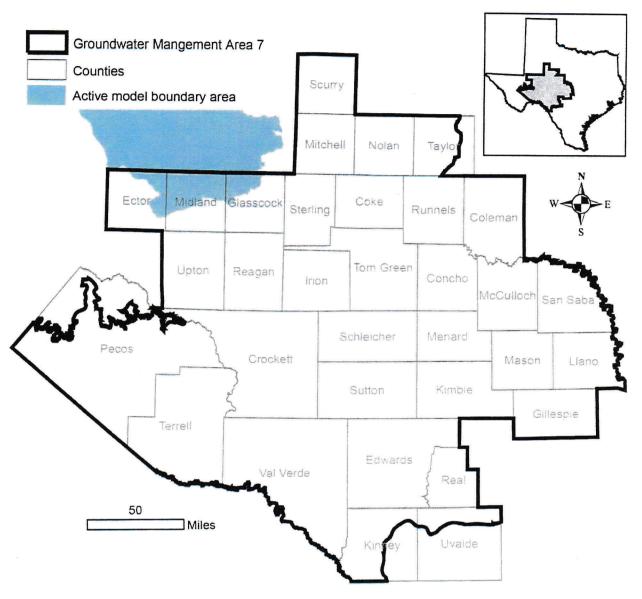


FIGURE 11. MAP SHOWING THE AREAS COVERED BY THE OGALLALA AQUIFER IN THE GROUNDWATER AVAILABILITY MODEL FOR THE HIGH PLAINS AQUIFER SYSTEM IN GROUNDWATER MANAGEMENT AREA 7.

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 44 of 50

SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTY FOR EACH DECADE BETWEEN 2013 AND 2070. RESULTS ARE IN ACRE-FEET PER YEAR. MODELED AVAILABLE GROUNDWATER FOR THE OGALLALA AQUIFER IN GROUNDWATER MANAGEMENT AREA 7 TABLE 11.

Dictrict					Year			
חוזותו	county	2013	2020	2030	2040	2050	2060	2070
Glasscock GCD	Glasscock	8,019	7,925	7,673	7,372	7,058	6,803	6,570
	Total	8,019	7,925	7,673	7,372	7,058	6,803	6,570
GMA 7		8,019	7,925	7,673	7,372	7,058		6,570

Note: The year 2013 is used because the 2012 desired future condition baseline year for the Ogallala Aquifer is an initial condition in the predictive model run.

SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN FOR EACH DECADE BETWEEN MODELED AVAILABLE GROUNDWATER FOR THE OGALLALA AQUIFER IN GROUNDWATER MANAGEMENT AREA 7 2020 AND 2070. RESULTS ARE IN ACRE-FEET PER YEAR. TABLE 12.

Contracto	VUMU	nine Barin			Year	ar		
county	RWFA	KIVET BASHI	2020	2030	2040	2050	2060	2070
Glasscock	<u>[1</u>	Colorado	7,925	7,673	7,372	7,058	6,803	6,570
		Total	7,925	7,673	7,372	7,058	6,803	6,570
GMA 7			7.925	7.673	7372	7.058	6,803	6.570

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 45 of 50

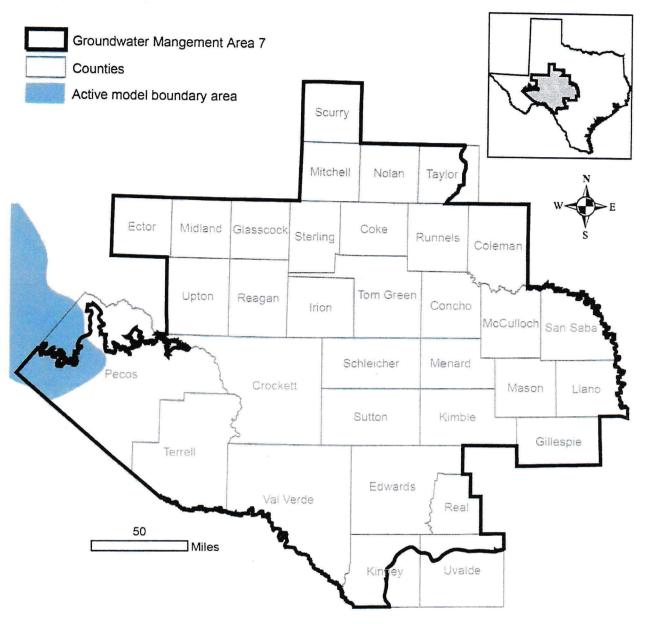


FIGURE 12. MAP SHOWING AREAS COVERED BY THE RUSTLER AQUIFER IN THE GROUNDWATER AVAILABILITY MODEL FOR THE RUSTLER AQUIFER IN GROUNDWATER MANAGEMENT AREA 7.

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 46 of 50

MODELED AVAILABLE GROUNDWATER FOR THE RUSTLER AQUIFER IN GROUNDWATER MANAGEMENT AREA 7 SUMMARIZED BY DISTRICT AND COUNTY FOR EACH DECADE BETWEEN 2009 AND 2070. RESULTS ARE IN ACRE-FEET PER YEAR. TABLE 13.

					Year				
DISUTICE	county	2009	2010	2020	2030	2040	2050	2060	2070
Aiddle Perns GCD	Pecos	7,040	7,040	7,040	7,040	7,040	7,040	7,040	7,040
	Total	7,040	7,040	7,040	7,040	7,040	7,040	7,040	7,040

MODELED AVAILABLE GROUNDWATER FOR THE RUSTLER AQUIFER IN GROUNDWATER MANAGEMENT AREA 7 SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN FOR EACH DECADE BETWEEN 2020 AND 2070. RESULTS ARE IN ACRE-FEET PER YEAR. TABLE 14.

	V UING	River			Year	ır		
county	KWFA	Basin	2020	2030	2040	2050	2060	2070
		Rio Grande	7,040	7,040	7,040	7,040	7,040	7,040
Pecos	۲.	Rio Grande	7,040	7,040	7,040	7,040	7,040	7,040

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 47 of 50

LIMITATIONS:

The groundwater model used in completing this analysis is the best available scientific tool that can be used to meet the stated objectives. To the extent that this analysis will be used for planning purposes and/or regulatory purposes related to pumping in the past and into the future, it is important to recognize the assumptions and limitations associated with the use of the results. In reviewing the use of models in environmental regulatory decision making, the National Research Council (2007) noted:

"Models will always be constrained by computational limitations, assumptions, and knowledge gaps. They can best be viewed as tools to help inform decisions rather than as machines to generate truth or make decisions. Scientific advances will never make it possible to build a perfect model that accounts for every aspect of reality or to prove that a given model is correct in all respects for a particular regulatory application. These characteristics make evaluation of a regulatory model more complex than solely a comparison of measurement data with model results."

A key aspect of using the groundwater model to evaluate historical groundwater flow conditions includes the assumptions about the location in the aquifer where historic pumping was placed. Understanding the amount and location of historical pumping is as important as evaluating the volume of groundwater flow into and out of the district, between aquifers within the district (as applicable), interactions with surface water (as applicable), recharge to the aquifer system (as applicable), and other metrics that describe the impacts of that pumping. In addition, assumptions regarding precipitation, recharge, and streamflow are specific to a particular historical time period.

Because the application of the groundwater model was designed to address regional scale questions, the results are most effective on a regional scale. The TWDB makes no warranties or representations relating to the actual conditions of any aquifer at a particular location or at a particular time.

It is important for groundwater conservation districts to monitor groundwater pumping and groundwater levels in the aquifer. Because of the limitations of the groundwater model and the assumptions in this analysis, it is important that the groundwater conservation districts work with the TWDB to refine this analysis in the future given the reality of how the aquifer responds to the actual amount and location of pumping now and in the future. Historic precipitation patterns also need to be placed in context as future climatic conditions, such as dry and wet year precipitation patterns, may differ and affect groundwater flow conditions.

Model "Dry" Cells

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 48 of 50

The predictive model run for this analysis results in water levels in some model cells dropping below the base elevation of the cell during the simulation. In terms of water level, the cells have gone dry. However, as noted in the model assumptions the transmissivity of the cell remains constant and will produce water.

REFERENCES:

- Anaya, R., and Jones, I. C., 2009, Groundwater Availability Model for the Edwards-Trinity (Plateau) and Pecos Valley Aquifers of Texas: Texas Water Development Board Report 373, 103p.
 <u>http://www.twdb.texas.gov/groundwater/models/gam/eddt_p/ET-</u> Plateau_Full.pdf
- Deeds, N. E. and Jigmond, M., 2015, Numerical Model Report for the High Plains Aquifer System Groundwater Availability Model, Prepared by INTERA Incorporated for Texas Water Development Board, 640p. <u>http://www.twdb.texas.gov/groundwater/models/gam/hpas/HPAS GAM Numeric al Report.pdf</u>
- EcoKai Environmental, Inc. and Hutchison, W. R., 2014, Hydrogeological Study for Val Verde and Del Rio, Texas: Prep. For Val Verde County and City of Del Rio, 167 p.
- Ewing, J. E., Kelley, V. A., Jones, T. L., Yan, T., Singh, A., Powers, D. W., Holt, R. M., and Sharp, J. M., 2012, Final Groundwater Availability Model Report for the Rustler Aquifer, Prepared for the Texas Water Development Board, 460p. <u>http://www.twdb.texas.gov/groundwater/models/gam/rslr/RSLR_GAM_Report.pd</u> f
- Harbaugh, A. W., 2005, MODFLOW-2005, The US Geological Survey Modular Groundwater-Model – the Ground-Water Flow Process. Chapter 16 of Book 6. Modeling techniques, Section A Ground Water: U.S. Geological Survey Techniques and Methods 6-A16. 253p.
- Harbaugh, A. W., 2009, Zonebudget Version 3.01, A computer program for computing subregional water budgets for MODFLOW ground-water flow models: U.S. Geological Survey Groundwater Software.
- Harbaugh, A. W., Banta, E. R., Hill, M. C., 2000, MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model – User Guide to Modularization Concepts and the Ground-Water Flow Process: U.S. Geological Survey, Open-File Report 00-92, 121p.

 Hutchison, W. R., Jones, I. C, and Anaya, R., 2011a, Update of the Groundwater Availability Model for the Edwards-Trinity (Plateau) and Pecos Valley Aquifers of Texas, Texas Water Development Board, 61 p.
<u>http://www.twdb.texas.gov/groundwater/models/alt/eddt p 2011/ETP PV One L</u> aver Model.pdf GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 49 of 50

- Hutchison, W. R., Shi, J., and Jigmond, M., 2011b, Groundwater Flow Model of the Kinney County Area, Texas Water Development Board, 217 p. <u>http://www.twdb.texas.gov/groundwater/models/alt/knny/Kinney County Model</u> <u>Report.pdf</u>
- Hutchison, W. R., 2016a, GMA 7 Explanatory Report—Final, Aquifers of the Llano Uplift Region (Ellenburger-San Saba, Hickory, Marble Falls): Prep. For Groundwater Management Area 7, 79 p.
- Hutchison, W. R., 2016b, GMA 7 Explanatory Report—Final, Ogallala and Dockum Aquifers: Prep. For Groundwater Management Area 7, 78 p.
- Hutchison, W. R., 2016c, GMA 7 Explanatory Report—Final, Rustler Aquifer: Prep. For Groundwater Management Area 7, 64 p.
- Hutchison, W. R., 2016d, GMA 7 Technical Memorandum 15-05—Final, Rustler Aquifer: Nine Factor Documentation and Predictive Simulation with Rustler GAM, 27 p.
- Hutchison, W. R., 2016e, GMA 7 Technical Memorandum 15-06—Final, Edwards-Trinity (Plateau) and Pecos Valley Aquifers: Nine Factor Documentation and Predictive Simulation, 60 p.
- Hutchison, W. R., 2016f, GMA 7 Technical Memorandum 16-01—Final, Dockum and Ogallala Aquifers: Initial Predictive Simulations with HPAS, 29 p.
- Hutchison, W. R., 2016g, GMA 7 Technical Memorandum 16-02—Final, Llano Uplift Aquifers: Initial Predictive Simulations with Draft GAM, 24 p.
- Hutchison, W. R., 2016h, GMA 7 Technical Memorandum 16-03—Final, Capitan Reef Complex Aquifer: Initial Predictive Simulations with Draft GAM, 8 p.
- Hutchison, W. R., 2018a, GMA 7 Explanatory Report—Final, Capitan Reef Complex Aquifer: Prep. For Groundwater Management Area 7, 63 p.
- Hutchison, W. R., 2018b, GMA 7 Explanatory Report—Final, Edwards-Trinity, Pecos Valley and Trinity Aquifers: Prep. For Groundwater Management Area 7, 173 p.
- Hutchison, W. R., 2018c, GMA 7 Technical Memorandum 18-01—Final, Edwards-Trinity (Plateau) and Pecos Valley Aquifers: Update of Average Drawdown Calculations, 10 p.
- Jones, I. C., 2016, Groundwater Availability Model: Eastern Arm of the Capitan Reef Complex Aquifer of Texas. Texas Water Development Board, March 2016, 488p. <u>http://www.twdb.texas.gov/groundwater/models/gam/crcx/CapitanModelReport</u> <u>Final.pdf</u>

GAM Run 16-026 MAG Version 2: Modeled Available Groundwater for the Aquifers in Groundwater Management Area 7 September 21, 2018 Page 50 of 50

- National Research Council, 2007, Models in Environmental Regulatory Decision Making Committee on Models in the Regulatory Decision Process, National Academies Press, Washington D.C., 287 p., <u>http://www.nap.edu/catalog.php?record_id=11972</u>.
- Niswonger, R.G., Panday, S., and Ibaraki, M., 2011, MODFLOW-NWT, a Newton formulation for MODFLOW-2005: United States Geological Survey, Techniques and Methods 6-A37, 44 p.
- Panday, S., Langevin, C. D., Niswonger, R. G., Ibaraki, M., and Hughes, J. D., 2013, MODFLOW–USG version 1: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation: U.S. Geological Survey Techniques and Methods, book 6, chap. A45, 66 p.
- Shi, J, 2012, GAM Run 10-043 MAG (Version 2): Modeled Available Groundwater for the Edwards-Trinity (Plateau), Trinity, and Pecos Valley aquifers in Groundwater Management Area 7, Texas Water Development Board GAM Run Report 10-043, 15 p. www.twdb.texas.gov/groundwater/docs/GAMruns/GR10-043 MAG v2.pdf
- Shi, J., Boghici, R., Kohlrenken, W., and Hutchison, W., 2016, Numerical model report: minor aquifers of the Llano Uplift Region of Texas (Marble Falls, Ellenburger-San Saba, and Hickory): Texas Water Development Board published report, 400 p. <u>http://www.twdb.texas.gov/groundwater/models/gam/llano/Llano Uplift Numeri cal Model Report Final.pdf</u>

Texas Water Code, 2011, http://www.statutes.legis.state.tx.us/docs/WA/pdf/WA.36.pdf